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ABSTRACT

The dynamical response of two cylindrical shells, one with and

one without ring-stiffening, was investigated. The driving-point admit-

tance was measured and compared with predictions using the Mean-Value

Admittance Method. This method predicts the geometric mean of the
response of a vibrator with respect to frequency and is useful in under-

standing the behavior of many complex structures. The basic computations

involve the mode functions, mode masses, and the mode density. The

measurements were in good agreement with the theory, and demonstrate that
the Mean-Value Admittance Method is a practical means of predicting the

vibrational response of shell structures to point excitation.
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CHAPTER 1

INTRODUCTION

1.1 Background

There is a strong motivation for the study of the vibrations
of cylindrical shells.. They are the prototypes of such practical struc-
tures as pipelines, containment vessels, undersea vehicles, aircraft,
and machine housings. Insight into the dynamical response of cylindri-
cal shells to various exciting forces is essential to the understanding
of the sound radiation from, or the vibration isolation between com~

ponents of many practical structures.

Compared to structural elements such as beams and plates, the
shell vibrates in an extremely complex manner. Because of the shell's
curvature, it is impossible to separate the extensional or membrane-like
motion from the bending or plate-like motion. With coupling between ex-
tension and bending, the development of an equation of motion is a for-
midable task. Of all the possible shell structures, only the circular
cylindrical and spherical shell are mathematically tractable. An ex-
cellent and self-contained derivation of the equations governing the vi-

bration of shells is presented in Reference [1].

Much of the early literature on cylindrical shells was di-
rected toward the development and solution of various shell equations of
motion to determine natural frequencies and mode shapes for various

boundary conditions. The development of shel)l theories and their

rfan £
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associated equations of motion reached a high degree of accuracy (and

complexity) by the late 1950's. Reference [2] provides an excellent
overview of the historical development of various thin shell theories.
Of particular importance in the development of modern shell equations of
motion is the paper by Arnold and Warburton [3]. This paper quantified
the relationship between bending and extensional energies of vibration

for the cylindrical shell.

The profusion of thin shell theories led Greenspon [4] to
evaluate the range of applicability of these theories in comparison with
exact thick shell theories. Greenspon concluded that the membrane the-
ory of shells is accurate for predicting frequencies and displacement

ratios of cylinders with appreciable thickness.

An excellent reference for the researcher and engineer is the
monograph prepared by Leissa [51. This monograph summarizes over 500
papers, published before 1977, on cylindrical shells. Chapter 1 provides
a very detailed discussion of the differences between the various shell
theories. One can generally conclude that the differences between the
shell equations arises from small differences in the strain-displacement
relationships, and these differences have little significance in most

practical applications.

The development of the shell theories has produced a good un-
derstanding of the behavior of vibrating shells. When it comes to prac-
tical applications, however, these methods do not go very far., In prac-
tice, we are usually concerned with the response of a vibrating system

to a given excitation as a function of frequency. Specifically, we are

interested in the resulting velocity on the surface of a vibrator for a




given force distribution. This information is embodied in the mechani-

i cal impedance, or its reciprocal, the admittance. The simplest force

distribution is a point force. Because the response due to an arbitrary

a¥Wl.. .

o - forcing function can be generalized from that of a point force, we are

most interested in the response to point excitation.

XY

L4
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Although there is a wealth of literature available concerning
the shell equations, resonance frequencies, and mode shapes, there are
relatively few papers which address the mechanical impedance of cylin-

drical shells.

. A es

Franken [6] developed an expression for the impedance of non-

=’ ‘“‘.»

vy

axisymmetric modes to peint excitation below the radial resonance fre-

quency. The ring-stiffened shell problem was set up conceptually, but

was not solved analytically. The models developed in this thesis bear

w
s et
L}

ad

a strong resemblance to the circuit representation in Franken's paper.

R

iy

The model suggested by Franken provides a good estimate of the ring-

—— s -

shell response at low frequencies, but at high frequencies the model

must be modified.

: Based on approximate shell equations, Heckl [7] developed sim-

—

ple formulas for the resonance frequencies, modal densities, and driving-

point impedance of cylindrical shells. Although his results are based on

many simplifications, Heckl clearly demonstrates that the simplifications !
are more than accurate enough for practical vibration control work. The
- simplified frequency equations which Heckl presents are used in this the-

o sis in deriving the density of resonances for a cylindrical shell.

}
'
]
|
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Palladino and Neubert [8] demonstrated the use of mode-sum
techniques for the prediction of the admittance of long pipe-like cylin-
drical shells to point excitation. Their paper also provides a good

discussion of the anomalies that occur in transfer admittance data.

Because of the complex nature of vibrating ;tructures, it is
desirable to develop simplified methods for the estimation of gross re-
sponse, In practice, we are usually concerned with only the mean re-
sponse over some frequency band. Quite often the excitation can only be
described in terms of broad frequency spectra, and in general, one would

be interested in only the broad frequency response.

Skudrzyk [9, 10, 11] has developed expressions for the geo-
metric mean of the admittance of the most important vibrators: rods,
beams, rings, plates, shells, and membranes. Skudrzyk's Mean-Value Ad-
mittance Method predicts the mean line through the logarithmically re-
corded frequency response curve of a complex vibrator, the height of the
resonance peaks, and the depth of the antiresonances. The results ob-
tained using this method provide a good approximation with which to eval-
uate the design of many complex structures consisting of the fundamental
components of plates, shells, beams, and rings. One of the most im-
portant features of this method is that, in contrast to other methods
such as Statistical Energy Analysis and Finite Element Analysis, the
Mean-Value Admittance Method is applicable at low, as well as high fre-

quéncies.

1.2 PurEose

The purpose of this thesis is to demonstrate a practical

method of predicting the vibrational response of cylindrical shells to
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point excitation. The measured driving point admittance is compared

with predictions using the Mean-Value Admittance Method.

The scope of this investigation is limited to circular cylin-
drical shells, although many of the methods used, and the results ob-
tained, can be extended to plates and shells of other shapes. The shells
that are studied may be classified as thin; that is to say that the
stress distribution can be taken as linear through the thickness. The
shells are homogeneous and isotropic. The special case of anisotrophy,
orthotrophy, is also investigated. Complicating effects which are not
addressed are: initial stresses, variable thickness, large deflections
(nonlinear behavior), and the surrounding acoustic media. The effects

of shear deformation and rotary inertia are neglected.

Quite often a ring is added to a cylinder to stiffen the shell
at a point of excitation, thereby reducing the vibrational energy that
is transmitted to the shell structure. A radial point force in the
plane of the ring will excite one-dimensional modes in the ring which
will then couple with two-dimensional modes in the shell. Analytical
models are evaluated that describe in a simplified manner the coupling
between shell and ring modes, while retaining the important features of
the vibrational response. Methods are presented for the prediction of
the mean-value of the driving-point admittance of shells, botﬁ with and
without stiffening rings. Although not specifically discussed, the re-
sults of these investigations can also be extended to the use of string-

ers to stiffen the shell in the axial direction.

During the course of this investigation numerous driving-

point and transfer admittances were measured on two cylindrical shells,
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one with and one without ring-stiffening. 1In order to provide a complete
analytical treatment, it was later decided to limit the scope of investi-
gations principally to driving-point admittances. The extension of the

mean-value theory to the calculation of transfer admittances is intro-

duced but not pursued.
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CHAPTER I1

THEORY

2.1 C(Classical Mode-Sum

Fundamental to most vibrational theories is the concept that
the response of any closed system to an arbirtary excitation can be rep-

resented by the superposition of the system's natural modes:

g = 2 £, (xy,2) e , (2.1)
v
Here, £ represents the scalar displacement on the surface of the vibra-

tor, and &, are the mode functions. The harmonic time dependence of

el“% is assumed for all the excitation and response functions and will

hereafter be omitted. The mode functions or eigenfunctions of a systen

N o
N

represent natural states in which the system prefers to vibrate, inde-

A

pendent of the forcing frequency. Along with satisfying the boundary

E l conditions of the system, the mode functions must obey the property of

‘ orthogonality. It will suffice to say that the property of orthogonality
cannot be satisfied unless the system is closed; by this we mean that it
: is reasonably isolated from its surroundings such that vibrational energy

! is not lost or gained in an unpredictable manner.

By representing the system in terms of mode functions, the re-
sponse of any homogeneous system can be reduced to a set of one-degree of
freedom oscillator equations, one equation for each mode. This is accom-

plished by incorporating into the elements of the one-degree of freedom

. oscillator information concerning the forcing function and the point of
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observation on the surface of the vibrator. Rather than writing out the
oscillator equations, it is more convenient to use the symbolic notation
of electrical network theory to represent the vibrating system. The cir-
cuit representation of a homogeneous vibrating system is illustrated in -

Figure 1. By representing the vibrator by its electrical equivalent, we

can make use of the powerful theorems developed for electrical networks

and transmission lines [11].

The circuit shown in Figure 1 is called a canonic circuit, and
consists of the parallel connection of an infinite number of series-

resonant circuits, one for each mode. Each series circuit is composed

of a mode mass (M,), compliance (C,), and resistance (R,). At very low
frequencies, the system usually behaves like an inductance (MO), which
represents the rigid body translation of the vibrator. At very high
frequencies, the system is usually shunted by a capacitance (C,) which

represents the compliance at the interface between the driver and vibra-

tor, or the local deformation of the vibrator material in the vicinity

of the driver.

Given the resonance frequencies, Wy, » and the modal loss fac-

tors, n,,, the mode compliance and resistance can be expressed in terms

of the mode mass:

1
C.. = (2.2)
_ Vo wdn,
and
R, = w—-\z) A b )
S o nvtl\) . (a.a)

Tae general expression for the mode mass is:
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Figure 1  Canonic Circuit Representation of a llomogeneous Vibrating
System (from Skudr:-y¥k, Reference 11).

AldiCaLy




S Y gk R

-

ITTT NI
a5

ik

. ‘;l’.&:

I apad® - -

L

———

10

1 - M<E2>
My = ——— [mglds = —2— . (2.4)
KyE(A) < 65 (A)

S
Here, we are assuming that the surface mass density (m) is constant over

the surface area (S). The total mass (M) is then: M = mS. The quantity

{
<55>is the average of the square of the yth mode function ©ver the sur-

face area. The quantity K, is the excitation constant, and is defined

by:

FE&
K, = R A . (2.3)
Fqo £,(A) o
S S
The excitation constant states how much of the total force (Fy) is avail-

able to excite a particular mode (§y,;). Term A symbolically denotes the

point of observation.

For a point force the excitation constant becomes:

B .
E,(A) ’

Ky (2.6)

where F denotes the coordinates of the point force. Thus, the point

mode mass becomes:

M <g2>

M 2 —Y
b Ey(F)E,(A)

It can easily be shown by integrating the square of the mode function
over the surface of a vibrator of total mass M that Mv='§L for one-

dimensional vibrators such as beams and rings, and that MV:'%L for two-

dimensional vibrators such as plates and shells. Here we are assuming

that the mode functions are sinusoidal, and that the distortion of the

mode function at the edge of the vibrator may be neglected.
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The admittance of the system can now be expressed as the sum

of the individual mode admittances (neglecting M, and C):

o Lo =] 1
AERPIED)
b
V=0 v=0 Rv‘+3w1v.*jwcv
0
[A]
= . ) 2.8
zo M, [wdn, + 3 (W*-wl)] (2.8)
\)'—'

The admiztance is simply the resulting velocity of the system for a

given force distribution.

For the driving-point admittance (driver and receiver coinci-
dent), all of the modes are excited with the same phase as the driver,
and all the circuit elements are positive. Therefore, resonances and
antiresonances alternate with increasing frequency as predicted by Fos-
ters Theorem. At a resonance the admittance is a maximum, and at an

antiresonance the admittance is at a minimum.

For the transfer admittance (driver and receiver separated),
the circuit elements no longer need be positive. The circuit elements,
M,, will be negative if the point of observation is vibrating in anti-
phase with the driven point. If the elements of two successive reso-
nant circuits have opposite signs, their contributions add in the fre-

quency region between the resonance frequencies. The result is plotted

as a shallow trough, similar to the trough in the transmission curve of

a band-pass filter,
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The mode-sum procedure offers a straightforward and universal
approach to the description of vibrating systems. Yet, it has limited
applications for most of the complex structural systems in use today.
The mode functions and resonance frequencies are usually too difficult
to predict, or if predictable, may be too numerocus and calculations be-
come tedious . If only a few resonance frequencies are of interest, a
prudent approach for complex systems is to experimentally measure the
resonance frequencies, either on the actual system, or if not feasible,
on a scale model of the system. The procedure is furcher limited by the
fact that there are no closed systems in practice. The best we can hope
for is that the system is only loosely coupled to its surroundings, or
that the exchange of vibrational energy to the system's surroundings is
somewhat tractable. Finally, the mode-sum procedure may provide more
information than is of interest., In fact, the detailed information pro-
vided by the procedure may lead us toward a false sense of accuracy. In
many practical structures, the resonances are so dense or overlapping
because of damping that the identification of individual modal responses
would be of little value. Instead, we are interested in the gross re-
sponse over some frequency band that may contain many overlapping modal
responses. A suitable measure of this gross response would be the geo-
metric mean of the admittance over some frequency interval. This mea-

sure is the topic of the next section.

2.2 Mean-Value Uriving-Point Admittance

If the velocity amplitude of a vibrating system is plotted on
a logarithmic scale, the resonance maxima extend above the mean line

through the frequency-response curve as much as the minima extend below

4
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it. As the damping increases, the maxima and the minima coalesce to the

¥

same geometric-mean response curve. The mean line can be considered to

represent the characteristic wave field that would be generated by the
driver if the vibrator were sufficiently large or sufficiently damped so
that reflections from the boundaries do not contribute significantly to

the response at the driving point.

2
[P T IR

e B

By integrating the modal responses over a unit frequency in-

terval, Skudrzyk [9, 10, 11] has shown that the geometric mean of the

panodll g Lokt a3 BB oy,

driving-point admittance of any homogeneous vibrator is described by:

(2.9)

L
".'
kv

>

where ¢, is the frequency difference between successive resonances (in-

Nogas® -
)

verse of the density of resonances) and M,, is the point mode mass. The

N

real part of the admittance describes an energy carrying wave that prop-

agates away from the driving point (characteristic wave), and the imag-

inary part represents a wattless field that is observed near the driver.

For vibrators with constant g,M,, the imaginary part of the
admittance is zero. This result follows from the fact that the contribu-
tions to B, from the modes whose resonances are above the forcing fre-
quency cancel the contributions of the modes whose resonances are below
the forcing frequency. This applies to most of the important vibrators,
such as rods, plates, and shells (above the radial resonance frequency).
The exception is the beam or ring, where €4, is proportional to V.

For these types of vibrators, B

o is a negative mass admittance and is
¥

. equal to the real part. i
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For most vibrators, the task of determining the driving-point

admittance essentially reduces to that of determining the density of

resonances.

e

W)




CHAPTER III

CYLINDRICAL SIHELL

In this chapter, simple expressions are derived for the pre-
diction of the mean-value of the driving-point admittance of a circular
cylindrical shell. The task of determing the driving-point admittance es-
sentially reduces to that of determining the density of resonances. The
derivation of the density of resonances is generalized to the case of
orthotropy where the bending stiffnesses are not equal along the princi-
pal axes of the material. The orthotropic cylindrical shell is a useful

- model of a cylinder with stiffening rings or stringers. The predicted

mean-value admittance of an isotropic shell is compared with experimental

measurements, and an interpretation of the data is provided. For de-

tails of the experimental investigations, the reader is referred to Ap-

pendix A,

3.1 \Mode Parameters

3.1.1 Mode Mass

The displacement in the radial direction of the cylindrical

shell may be described by the mode functions:

= §cosnf cos kpz

ém,n

. Yid -~ -
- wiere: k, = =& = 9 , m=0,1,2,3... . (3.2)

o] 'Z‘ 2




Figure 2 Coordinate System and Dimensions of Circular
Cylindrical Shell.
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The coordinate system and dimensions of the cylindrical shell are shown

in Figure 2. Here, n is the integer number of waves in the circumferen-
tial direction, and m is the integer number of half-waves in the axial
direction. It is convenient to introduce the normalized wavenumber,

G/a, which will be used in the shell frequency equation.

The spacial average of the square of the mode function is:

2n 2

5 1 ~
£ > = 2 cos?nf cos?M: 4z dp =
m,n 2ne 5 Z “

0 o0
For a point force, £ n(F)::é ; and if the point of observation coin-
2

cides with the driving point, gm n(A) =g. Using Equation (2.7), the

mode mass then becomes:

M _
Man = 7 . (5.4)
As one would expect for a two-dimensional vibrator, the point mode mass

is one quarter the total mass of the cylinder.

3.1.2 Density of Resonances

The density of resonances (or mode density) for the cylindri-
cal shell has been derived by Heckl [7] and Skudrzyk [11]. Heckl based

his analysis on a simplified equation for the natural frequencies.

Skudrzyk, using a less simplified form of Heckl's equation and a unique
approach, obtained more accurate results. Skudrzyk's derivation can,
however, be improved in the region about the radial resonance frequency

of the cylinder. The following derivation uses Skudrzyk's approach, but

improves the accuracy of the results near the radial resonance frequency.
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It also generalizes to the case of orthotrophy where the bending stiff-

nesses are not equal along the principal axis of the material.

The resonance frequencies of a simply supported finite cylin-
de; of length £, radius a, and thickness h are given by:

(1-p*)c* ‘ n®(d-u)-2-u -
2 A2TH S 2|02 . <2y2 _ , 5
Q (n? +0?)2 + Y (" +0%) MZ(I-U) (3.5)

where v = h/V/12a is the thickness-to-radius parameter, u is Poisson's
ratio, and Q==w/w° . The frequency is normalized to the radial reso-
nance frequency m0==cp£/a , where 2 is the velocity of a longitudinal
wave in a plate., Heckl shows that this equation is in good agreement
with measurements performed by Arnold and Warburton [2]. By using

M = 0.3 this equation reduces to:

4
0.190
= ———— + y2 [(m?+0%)?-2.6n% +1.6] . (3.6)

(n2 +G2)2

2

In order to calculate the density of resonances, Heckl approximated this

frequency equation by:

2 o’ 2 2 i 3.7
N s (UL : (5.7)

while Skudrzyk used the following form:

a* 2,2 242 -
0 2 ———— s n* +g . .3
Equations (3.6) through (3.8) are plotted in Figures 3 through 5, re-
spectively, for Y = 0.01. These figures display the contours of con-

stant frequency in wavenumber space, and are shown as continuous func-

tions for convenience only. As shown in these figures, Equation (3.8)

is a much better approximation of the frequency equation than is

_d
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Equation (3.7), particularly for Q<1 . However, neither approximation

is good in the vicinity of t=1 . We shall use Equation (3.8} in our
calculations, but we must exercise caution in the vicinity of 2=1 to

assure a valid result.

Recognizing that the bending stiffness is proportional to
thickness, and thus y, we can introduce different bending stiffnesses

along the 9 and z axes by introducing different ¥y's for each modenumber:

Y, = hl//ffa and Y, = h2/ 12 a . (3.9}

Here, Y1 is the thickness-to-radius parameter in the circumferential di-
rection, and Yy, is the thickness-to-radius parameters in the axial di-

rection. Equation (3.8) now becomes:

N
g 2
QF = ————— + (y,n%+ y,0%)? . 5.10
Ze 0)? (Y n"+ v,0%) (3-10)

Equation (3.10} can be simplified by'introducing the polar co-

ordinates:
2
2 " g P
= N+ 0 and cos* $p = —7 . {3.11)
r

Thus:

0% = cos?¢p + r“(ylsinZQ +y,c0s%¢)?

cos?s + r*B%(9) . (3.12)

The relationship of thesc parameters to the wavenumbers is displaved in
Figure 6. Assuming that ¢ is constant, the change in r with respect to

frequency is:
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The area between the curves {8 = constant and f +4f = constant is given

AR
Ar d . 3.14
fr o f sin®¢ + oCOS 2¢) '/_ cos‘o (318
QZ

The lower limit of integration ¢; depends on the value of n.

For n = 0, the frequency equation becomes:

Q=1 + on“ .
< (3.13)

The lowest frequency that is possible is Q= 1, which corresponds to

¢ = 0; this means that the cylinder is infinitely long. Therefore, for

2>>1 we must use n = 0 and $; = 0. For 0<<'1, the lowest value of ¢

occurs for n = 1 (see Figure 5), and the frequency equation becomes:

2 _ o"

242 -
—_——— 4+ +YA0 . 3.16
T+o5)? (¥, +Y,9%) ( )
Unless ¢ is very small, the membrane term o“/(1+0°)%=1 , and § would
be beyond the frequency region of interest. We can thus neglect vy,c°

Compared to fy - If this were not true, that is if Y,oz was the domi-

nant term, Equation (3.16) would reduce to the frequency equation of a

beam along the c-axis. Rewriting Equation (3.16) we have:
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Q? = cos“\pL + Yi
and Q. 4
3, = cos /qu_Y; = cos /(QZ_wi)/wg
= VQ . (3.17)

Here, Wy is the first pure circumferential resonance (n = 1, ¢ = 0},
Note that if w is less than w; , sometimes called the cut-off frequency,
the limiting angle becomes imaginary. The error in the approximation
above is negligible as long as w<<w, but not so low that W=w; . As
the frequency increases such that Q approaches 1, the error becomes
larger, particularly if the shell is thick or short. For @ = 1, we use
n = 1 in an approximate form of Equation (3.6):

2
Gc =1

I}

4 W s 2 2 2
0.91 cos ¢L + T (Y151n ¢L + Y, cos ¢L)
1
s b
sin ¢L

1

0.91 cos*¢, + (vpsinop + ypeos®9)® .

Since ¢ is small, cos ¢L:1 and sin 3 = ¢L ; and we have:

2

1 2 2 Y32

1 =20.91 + —(y. o7 +v. )% = 0.91 + —

¢‘* 1L 2 Qb

and L L
o, = 27 . (5.18)

The area in the r,® plane that corresponds to one resonance is
dnis=7a/¢ , and the number of modes per unit frequency interval is

given by:

/2
A
Ay _ Bnc _ ¢ S (5.19)
81 2@ 2ma | (v;sin®d + v,c08%9) V[ costy
QZ
°L

, and the density of resonances is:
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n/2
éﬁ. = z d¢ = i,' T = ﬂ
G 2ma ylsinzq + Y2c052¢ 27a ZVYle 4aVYIYé
0
.3t (3.20)
= . 3.4
2/h1h2

Thus, at high frequencies, the mode density is inversely proportional to
the geometric mean of the axial and circumferential thicknesses. 1If
hy = ha = h, the mode density reduces to V3 2/2h , which is the same as

that of a plate.

At frequencies in the vicinity of the radial resonance fre-

quency (2= 1), the density of resonances becomes:

/2
a2 =
ol 2ma (YiSin2¢ +Y,c05%9) Y1 - cos*¢
2/,
+1
i} 2 dx
2ra [Cﬁ-ﬁ)x+72]2x/2-3x+x2
47}

Neglecting (Yl-yq)x compared to Y, we have:

.
Ml i -
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AN 21 V3 L
ik L Y 1n(2 = In(2
= (0.195 j;-ln(z/Yé) . (3.21)
I

2
Thus, at frequencies in the vicinity of the radial resonance frequency,
the mode density for most practical purposes depends only on the bending
stiffness in the axial direction. This is not surprising since a great

many axial modes (n = 0) occur in the vicinity of w,.

At very low frequencies (<<1), the angle ¢ approaches m/2 and

we can write ¢ = 3 €~ Substituting this ¢ into Equation (3.19), the

density of resonances becomes:

R

9
I A de .k _de
£G - 2ma (Y, +Y,8%)/ €" Zmay, Vi.g"

0
+1 .
_ F dx _ R _ L/
) may 1-x* 2may, 22 7 2may
0
- Z‘ .
= /; )/ﬁ . (J 22)

This result was obtained by Skudrzyk. By noting that ¢ approaches 7/2
as the frequency decreases, one is tempted to assume that cos'd = 0

and that Equation (3.19) becomes:
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/2 /2
AN L do . £ de
— 2D — — ¢
8 2ma [ (y;sin¢ +y,cos%0)/] _-_C;’;““’ 2nay
cos /& cos vQ
- 0]
«—t  (m/2-costVl) = sin v = ) (3.23)
Znayl Zﬂayl ZTraY1

This is the underlying assumption in Heckl's calculations. However, the

N
. s
ratio EEEJQ

cannot be considered zero within the lower range of 4.
Heckl noted that his experimental data was a factor 1.1 greater than his
theory. Thus, Equation (3.22) would show excellent agreement with

Heckl's experimental data.

The density of resonances at low frequencies depends primarily
on the bending stiffness in the circumferential direction. This is in
contrast to the situation at high frequencies where the density of reso-

nances depends on the geometric mean of the stiffnesses in the axial and

circumferential direction.

In summary, the density of resonances (l/sm n) for the ortho-
b

tropic cylindrical shell may be approximated by:
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(
al . wu W
4oy oy
AN _ AN 1 < 2L i), w=w, $ (5.24)
Mo A wy V27 a3 2

_ai_/ﬁ N w<un
L_ 4/§'ai J

Here, we have introduced the circumferential and axial stiffness con-

stants, defined by:

¢ ,h e 2
ol - —lj.f_?—l and a2 = —%5— . (3.25)

The density of resonances for the orthotropic cylindrical shell is il-
lustrated in Figure 7, for various values of 0y and Q. The curves in
this figure were computed numerically using Equation (3.10) and normal-
ized to the high frequency mode density of an isotropic shell with stiff-
ness constant az . At low frequencies the density of resonances for the
most part is inversely proportional to the stiffness in the circumfer-
ential direction. If this stiffness is reduced by !; the density is
doubled. At high frequencies the density of resonances is inversely pro-
portional to the geometric mean of the circumferential and axial stiff-
neéses. If either one of these stiffnesses is reduced by '; the density

is increased by a factor of v2Z. If both of these stiffnesses are re-

duced by !; the density of resonances is doubled.
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For the isotropic shell, g« =a,=a, . The density of reso-

1
nances for the isotropic shell is illustrated in Figure 8. This figure
is normalized to the high frequency asymptotic value. At low frequen-
cies the mode density increases proportional to the square-root of fre-
quency, just as a membrane where extensional modes are predominant. In
the vicinity of the radial resonance frequency, the mode density attains
a value that varies inversely with the thickness to radius parameter,y .
The density peaks at a value that is greater than the high frequency
mode density. At high frequencies the shell behaves as a plate with a
constant mode density of (ai/4a§). As shown in Figure 3, the contours
of equal frequency approach that of a quarter circle with its center at
the origin, the same as a plate. The density of resonances for the
shell is, however, twice as great as that of a rectangular plate of the
same surface area and thickness, This is a consequence of the degener-
acy of the circumferential modes which need only satisfy the condition

of periodicity about the circumference.

Strictly speaking, the density of resonances derived in this
section is valid only for simply supported cylinders. But, these re-
sults can be applied to any cylinder with nondissipative boundaries.
This is because the resonance frequencies of a simply supported cylinder
are identical to those of a cylinder with nondissipative boundaries
whose length has been slightly adjusted to match the nodal lines closest
to the boundary. As long as the axial wavelength is small compared to
the length of the cylinder {an assumption made in deriving Equation

(5.6)], the error is negligible.
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5.2 iMean-Value Driving-Point Admittance

Using Equations (2.9) and (3.24), the real part of the driving-
point admittance of an isotropic cylindrical shell, excited by a radial

force at an internal point is given by:

L
12 ’ u>wo
Smsas
1 1 In(2/Y>
Gs = A Mg © < 8mea? ‘(/*:; ,T-l s W=, > . (3.26)
..(.. Em,n)T < S s A
1 ‘/5_2_ s w<w0
\ smal V2 )

where mg is the mass per unit surface area of the shell.

The density of resonances derived in the previous section is
for axial modes of the form cos %?z . All of these modes are fully ex-
cited when the driver is located on the edge of the shell. However,
when the driver is moved to an internal point on the shell, not all
modes are fully excited. For an internal driving point, it is conven-
ient to assume the driver is at the center of the shell. In this po-
sition the odd order modes {(m = 1,3,5 ...) are fully excited, and the
even modes (m = 2,4,6 ...) are not excited at all. Thus, the density of
resonances (1/€,) at an internal point on the shell is half the density
if the driver were at the edge of the shell. It follows, then, that the
driving-point admittance at an internal point on the shell is half the
driving-point admittance at the edge of the shell. From a physical

point of view, driving at an internal point on the shell means that the

characteristic wave is radiating into a full-plane; and we can expect
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that the velocity and admittance would be half that of the velocity and

admittance if driving at the edge, where the characteristic wave radi-

ates into a half-plane.

The imaginary part of the driving-point admittance, Bg, is
equal to the real part, Gg» if w<wy , and is approximately zero if WX .

The magnitude of the driving point admittance is then:

1
3 , W > wy
8m5as
Ygl = V62482 = . (5.27)
Vil , , W <,
Smsas

For most engineering applications it is sufficient to calcu-
late the high frequency admittance, 20 log|Y.| = -20 log (8msa§) , and
the radial resonance frequency, f, = cpz/Zna . The low frequency asymp-
tote of 20 log |Y | is then obtained by plotting a line with a +3dB per
octave slope that intersects the high frequency admittance at fo- In
most cases the increase above the high frequency admittance at fo can be

neglected.

Experimental verification of the foregoing mean-value theory
was conducted using an aluminum cylindrical shell. The dimensions and
physical properties of the shell are provided in Appendix A. The sur-
f;ce mass of the shell is mg = ph, = 21.6 kg/m? , the stiffness constant
hs /Y12 = 12.5 m?/sec, and the radial resonance frequency is

. 2 _
1is Gs Cpt

fo = CpZ/Z”a = 53300 Hz . Using Equation (3.27), the high frequency mean-

value driving-point admittance in decibels is:




e

P

(91}
w

20 log |Y | = -20 log (8mgal)

-66.7 dB re sec/kg .

The thickness to radius parameter is y hs/a/ff = 0.009, and the in-

crease over the high frequency admittance at £, is:

5
20 log l%%;ill = +1.7 dB re sec/kg .
2T

For most engineering applications the increase of 1.7 dB can be ignored
because of the narrow bandwidth in which it occurs. However, in order
to illustrate some of the obscure features of vibrating shells, ‘the

1.7 dB increase at the radial resonance frequency will be included in

our predictions.

Figure 9 shows the measured driving-point admittance for both
undamped and damped cases, and the predicted mean-value driving-point
admittance. Here the driver is located at an internal point, approxi-
mately 6 cm from the center of the shell. From the undamped curve it may
be seen that at low frequencies the density of resonances increases with
frequency, and at high frequencies the density is relatively constant.
In the vicinity of f, there are a great many axial modes that occur for
the case where no circumferential modes exist (n = 0). The circumfer-
ential resonance frequencies can easily be calculated by letting o =0
in the frequency Equation (3.5). These resonances are marked by an as-
terisk in Figure 9. From the undamped curve we see that the resonances
usually occur as groups of axial resonances {m = 1,2,3...) about the
dominant circumferential resonances (n = 1,2,3...). Whenever a new
value of n is possible, the axial resonances occur very close to one

another. It is interesting to note that as the length of the shell is
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increased, the axial resonances would become less pronounced, and the
frequency curve would approach a curve resembling only the circumferen-
tial resonances. This is because the waves with large axial components
must travel farther and are attenuated more than the pure circumferen-

tial waves.

As damping is increased many resonances are excited within i
their bandwidth, and the admittance approaches the predicted mean-value
in Figure 9. This is significant because most cylindrical structures
will exhibit a response similar to the damped curve in Figure 9. The -
mean-value admittance theory will then provide a simple but accurate
method of predicting the mean response of many practical cylindrical

structures.

Figure 10 shows the same data as Figure 9, except that the 3
driving point is located at the exact center of the shell. In this po-
sition the driver can only excite the odd-ordered axial modes. These

modes are, however, fully excited, and many have resonance peaks that

are as strong as the circumferential resonances. As dampingis increased 4

the admittance approaches the predicted mean-value.

A oA N

Figure 10 illustrates a unique exception to the mean-value
theory. Because of the unique dimensions of the cylinder, more of the

resonances in the vicinity of the radial resonance frequency, f,, are

even-ordered than odd-ordered axial resonances. The result is that 3/5
of the resonances in the vicinity of the radial resonance frequency are
- even-ordered axial resonances. These even axial modes, however, cannot

be excited by driving at the center. Thus, instead of half the mode

R
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density for the center driven cylinder, we have 2/5 the mode density in
the vicinity of f,. The mean-value characteristic admittance at £, is
12/5
then 20 log
51172

mensions of the shell are changed slightly, or if the driver is moved

= -2 dB less than our initial prediction. If the di-

off center, the dip in the vicinity of the radial resonance frequency

would disappear.

Figure 11 is the same as the damped curve in Figure 10, except
that the frequency is plotted on a logarithmic rather than a linear
scale. The v dependence of the admittance below the radial resonance

frequency is simply a straight line with a +3 dB per octave slope. The

slight rise in the predicted mean-value at £, is omitted.
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CHAPTER IV

RING-STIFFENED CYLINDRICAL SHELL

The vibrational response of a ring-stiffened cylindrical shell
to point excitation in the plane of the ring is investigated in this
chapter. Several analytical models are developed to describe the be-
havior of the ring-stiffened shell. Each model varies in its complexity
and its accuracy in predicting the driving-point admittance in the plane
of the ring. The model selection in an engineering application would
depend on what details of the frequency response curve that the designer
is interested in. The models presented in Sections 4.2.1 and 4.2.2 dif-
fer primarily in the degree of simplification used in describing the
coupling between ring and shell modes. Very simplified models can be
used if one is interested in either very high or very low frequencies
relative to the radial resonance frequency. The high and low frequency
models are presented in Section 4.2.3. For thick rings, the high fre-
quency nodel must be modified to account for the first ring thickness
antiresonance. This modification is presented in Section 4.2.4. Final-
ly, the application of ring-stiffening to reduce the vibrational vel-

ocity of a cylindrical shell at the point of excitation is discussed in

Section 4.3,

Throughout this chapter, experimental measurements are pre-
sented to support the various analytical models. For details of the ex-

perimental investigations, the reader is referred to Appendix A.
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4.1 Mode Parameters

4.1.1 Mode Mass
The displacement in the radial direction of the ring may be

described by the mode functions:

~

Eq = & cos ud s u=1,2,3 ... s 4.1)

where u is the integer number of waves in the circumferential direction.
The mode functions of the cyiindrical shell are described by Equation
(3.1). The dimensions of the ring-stiffened cylindrical shell are
siiown in Figure 12. The shell is sectioned axially in this figure to

expose the details of the ring.

For a radial point force in the plane of the ring, the general

expression for the point mode mass of the ring-shell structure is:

o1
£2(A)

My

mgES dS . (4.2

S
Here, the excitation constant, Ky 2 is unity for a point force. The sur-

face mass density is a function of the axial coordinate as follows:

r
Mg . o<z<t, h
2nal

m(z) = { s, M , & <z<f +b . (4.3)
§ 2nal  27rb 1 1

M

S , £1+b<:<£
. 27al J

Assuming that the mode function, g, is fairly constant across the ring

width, b:

i ke -
e S
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Dimensions of Ring-Stiffened Cylindrical Shell.

Figure 12
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<g2> <g2>
) "R-b)] 5+ "b) —5d—
L = [mg'( ]]af)(.z\) My +mg )Ej(A)

14

= x[my (£~b)] + LM, +m'b)

=5 mi'(L+b) + M,

b
=L M (Lrg) + BN,

1]

¥ Mg + h M, . (4.4)

In the above expression, m{' = M;/¢ is the mass per unit axial length of
the shell. The final approximation is valid as long as the width of the

ring is much less than the length of the shell.

Equation (4.4) is not surprising, since we would intuitively
assume that the point mode mass of the total ring-shell structure would
be the sum of the point mode masses of the shell and ring alone. This
assumption is valid, however, only if the axial mode function is rela-
tively constant across the width of the ring, and if the length of the
shell is much greater than the width of the ring. The first restriction
is equivalent to the statement that the ring is a one-dimensional vibra-
tor. The second restriction above is equivalent to the statement that
the shell is a two-dimensional vibrator, because if the shell length is
reduced to the width of the ring the resulting mode mass would be the
same as a one-dimensional vibrator with a total mass of Mo+ M. From
this argument, we see that for a verv short cylinder the point mode

Mg M
mass of the ring-shell structure would fall somewhere between ( ff'*_;‘)
Mg + M, "

and ( —53——~)'




I O - . e

LW e -

4.1.2 Ring Density of Resonances

For bending vibrations in the plane of the ring, the ring res-

onance frequencies are described by [13]:

2
u+1)[(u+1)2-1] @

. (e Dlur1)*-1] “Z’ ’ u=1,2,3... . (4.3)
v Yueniel T

Here, r is the radius of the centerline of the ring and the stiffness

constant is: a; = thr/v1z, where g is the velocity of sound in a rod.

The ring vibrates similar to a center-driven beam of the same
cross section and length 27r, such that the vibration is symmetric about
the driven point. At the fundamental resonance of such a beam, the wave
travels down the beam and is reflected back to the driving point in phase

(A= 2rr). The beam resonance frequencies are, therefore, given by:

C / o 2

o [o R4 r
T -yl v, = uZ-Tr . (4.6)
271r T r-

R

W, = 2mu — = 274
u A

This is the asymptotic value of Equation (4.5). The curvature of the
ring increases the effective stiffness, unless the bending wavelength is
much smaller than the ring circumference. The first few resonance fre-
quencies of the ring are, therefore, higher than the frequencies given

by Equation (4.6).

If the ring is attached to the shell, we would expect the ring
resonances to be different than those given by Equation (4.5). The shell
will incrcase the effective mass and stiffness of the ring at the driven
point. Because the ring is much stiffer than the shell, we may neglect
the increase in stiffness created by the shell; thus the primary effect

of the shell on the ring is to mass load the ring. The increase in

PO
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effective mass at the driving point is simply the increase in the point
mode mass due to the shell. This increase in effective mass will de-

crease the ring resonance frequencies by a factor of:

Y B
B =| —rI— . (4.7)
ML ek M

M. . . Ms .
Here, :ﬁ is the mode mass of the ring, and 2;.15 the mode mass of the

shell. The ring resonance frequencies with shell mass loading are,

therefore:
2
@weDlwr1-1] *r
w, = T . 4.8
u /(u+1)2+1 rZ ( )

This result is demonstrated more rigorously in Section 4.2.1 by analysis

of the modal coupling between ring and sheli.

Experimental verification of Equation (4.8) was conducted using
a steel ring-stiffened cylindrical shell. Details of this shell may be
found in Appendix A. Figure 13 compares the measured ring resonance
frequencies with those predicted by Equation (4.3). The agreement be-

tween the measured and predicted ring resonance frequencies is good.

Above the first few resonances, the ring resonance frequencies

may be approximated by:

of
w, = ut =8 . (4.9)
rZ

The change in frequency between successive resonances (inverse of the

density of resonances) is:




RN I R O [ O SR S I
_ . 1 0 Y O I
BN >

I~ O

e o B B B B -
P e B Pl T o

= tny

[

-y .
ot — oF I N P L e e
m . 7~/ re
s 1l I T IOINitTTImT— e

o e e e —t -~
5 R
[ye] O
Lo

F-+—1- 2 - e —t W

0% [ S I ﬂ.w. —t . -+
O

S m -t - — - - ~— 04 e Sl o o)

e R R e R 4,/ o

o]
h At~ D n T i Le] [od} hdt~\0 wn % tn [} —
[ — .
— >
(zi)  AONANDIEL RINSVEIN
\ [} ’
e e AT IR L T X-m-rl. Lr ey -

10

U.1

(kHz)

PREDICTED FRLEQUENCY

Measured Verses Predicted Ring Resonance Frequencies with

Shell Mass Loading.

Figure 13




v _—"'-* I sz! -

-*-tn\"w .
| R

“

S Attt A Sk i i o
b M-
< it

Y

e

48
2 2
3 o a a
e =_°-’E.=23_ru=zg_§ e | .am s . (4.10)
u su r? T oa.vE T

The mode density of the ring is, therefore, increased by a factor that

is proportional to the fourth-root of the added mode mass of the shell,

4.1.3 Shell Density of Resonances

The resonance frequencies of the orthotropic cylindrical shell

are given by Equation (3.10). By making the following substitutions:

Y., = hr Y. = hs
1 A7 ’ 2 7a ’
2 CE hr 2 _ Cp(_ hS
a. = —= 9 a_ = — s
r 12 s /12
i [od J£ C
2 = 2 and Wy = L E
Wo a T

. -~ s,
the shell frequency equation becomes:
2 4 2 2
w, g Oy Gg
2 = ——R—— 4 (—p?+—=g2)2 . (4.11)
m,n (nZ +02)2 1_2 a2

This is the frequency equation for the orthotropic shell, with the cir-
cumferential bending stiffness determined by the stiffness of the ring
and the axial bending stiffness determined by that of the shell itself,

The membrane term remains essentially unchanged.

2

2
Given that Equation (4.11) reduces to w, = — n? for the pure

H

circumferential resonances (o = 0) and that the ring resonance frequen-

-
rs

a
. b Y . . .
cies are wy = — u’B, one is tempted to assume that the circumferential
)




]
;
l
;

bending stiffness term in the shell frequency equation should also be

modified by the factor of 8. This would assure that the shell's circum-
ferential bending pattern would match that of the rings at the ring res-
onance frequencies. This boundary condition exists, however, only in
the plane of the ring and cannot be applied to the entire shell. The
mass loading factor B can be applied to the shell's circumferential
stiffness only if the shell is stiffened by consecutive rings closely
spaced along the entire shell, or if the shell's response is primarily
dictated by circumferential modes which must match the ring resonance
frequencies, such as would occur near the circumferential mode cut-off
frequencies. These conditions are demonstrated more rigorously in

Section 4.2.1, by analysis of the modal coupling between ring and shell.

It was not possible to conclusively verify Equation (4.11) by
experimentally measuring the ring-stiffened shell resonance frequencies.
The response of the shell is composed of numerous and overlapping reso-
nance maxima which are difficult, if not impossible, to resolve (see Fig-
are- H3..._Furthermore, it is difficult to identify tite mode function as-
sociated with a particular resonance maxima. However, since our goal is
to estimate the mode density, a more reasonable approach toward verifying
Equation (4.11) would be to compare the predicted number of shell reso-
nances within a given frequency interval with the measured number of

resonances,

Table I lists the shell resonance frequencies predicted by
Equation (4.11). The circumferential resonance frequencies (0=0) do
not match the rings and, of course, are not excited. The resonance fre-

quencies in Table I are partitioned according to the ring resonance

NPT
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Table I

Predicted Resonance Frequencies (in Hz)
of the Ring-Stiffened Cylindrical Shell
Using Equation (4.11).
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frequencies that are marked by an asterisk in Figure 14. As predicted,
there are no shell resonances up to the second ring resonance. Between
the second and third ring resonance, Equation (4.11) predicts 3 shell
resonances; and between the third and fourth ring resonance, 21 shell
resonances are predicted. These predictions agree reasonably well with
the measured number of shell resonances shown in Figure 14. Above the
fourth ring resonance, the measured resonances cannot be resolved be-
cause of modal overlap. From this agreement, we can assume that the fre-
quency Equation (4.11) will provide a reasonable estimate of the density

of resonances for the ring-stiffened shell.

Using the results of Section 3.1.2 for the orthotropic shell,
the frequency spacing between successive resonances (inverse of the den-

sity of resonances) may be summarized as follows:

d do o h

R u)>>wo
var [

42 1 a2
- A < 3 > , (4.12)

at ln(Z/Yz)

2
5 QL
4y2 0r W << W

. ¢/ ’ °

¢
where w, = —gé is the radial resonance frequency, o is the shell stiff-

ness constant, and o, is the ring stiffness constant.
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4.2 lMean-Value Driving-Point Admittance

The ring-stiffened cylindrical shell may be represented by the
general circuit shown in Figure 15. This circuit is a reasonable repre-
sentation of the mechanical system as long as the velocities at points
(1) and (2) are equal in phase and magnitude, or as long as the nondis-
persive wavelength in the ring is much greater than the thickness of the
ring, At very high frequencies the circuit representation must be modi-

fied to account for the ring thickness antiresonance.

In Figure 15, Z, is the impedance of the ring, and Zg is the
impedance of the shell. The impedances must be modified to account for
the modal coupling between the ring and shell. The coupling can be de-
scribed in various degrees of complexity, depending on what features of

the vibrational response are considered important.

4.2.1 Hybrid Mode-Sum and Mean-Value Model

Considerable physical insight can be gained by the representa-
tion of the ring and shell by their closed system mode-sums, and by con-
sidering how these two component systems are coupled to form a new
closed system. We can expect that the.new system formed by connecting
the ring and shell has resonance frequencies that are different than
those of the ring and shell alone. The interaction between ring and
shell will in general depend on the degree of matching between resonance
frequencies, on the degree of similarity of their mode shapes, and on

how the damping is distributed between the two components.

The driving-point admittance of the ring and shell may be

represented as the parallel combination of the ring modes in series with

R O, ST R R ETAR - Y VRN
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CIRCUIT REPRESENTATION

General Series Circuit Representation of Ring-Stiffened
Cylindrical Shell for Radial Point Force in the Plane
of the Ring.




the parallel combination of shell modes as shown in Figure 16. Here,

the driving-point admittance is Yo = v/F, and the mode parameters are de-

fined by:
Cy = zl ’ Ch = 21 ) Cp = 21 , (4.13)
wy Yy wp My Wy My
Ru=(i§nul\lu ' Rﬂ:fé-nnmn ’ Rm=%§"‘nm”m s

where M, and Mg are the total mass of the ring and shell, respectively,

@, are the ring resonances, Wp are the shell's pure circumferential

resonances (0 = 0), and wy are the remaining shell resonances (g # 0).

The circuit representation in Figure 16 is valid only if the
ring and shell are attached at a single point; that is, at the driver.
However, they are attached along the entire circumference of the ring,

and we must modify the mode parameters and the circuit accordingly.

The shell modes in Figure 16 are purposely arranged to illus-~
trate the coupling between the ring and shell. The pure circumferential
modes of the shell are shown separate from the remaining shell modes
which have some axial component. Because the shell's bending pattern
must match the rings bending pattern at the driving point, for every ring

mode there is a corresponding shell circumferntial mode. Furthermore,

since these corresponding pairs of ring and shell modes have the sanme

bending wavelength, then, n = u. The remaining shell modes where g # 0

. represent those modes that will propagate vibrational energy away from

“

. the ring.
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Figure 16 Mode-Sum Representation of Ring and Shell Admittance for
Simple Mechanical Connection at the Driving Point,
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With the ring and shell attached we can expect the new system
to possess resonance frequencies that are different from the ring and
shell alone. Consider a single ring mode and a single shell circumfer-
ential mode driven at resonance as shown in Figure 17. The resulting
simple circuit illustrates how the ring and shell mode parameters comn-
bine to form a new mode branch whose resonance frequency is different
from either the ring or shell alone., Of particular interest is the ef-

fective bending stiffness (or compliance) of the new system:

Ceff = W (BM_ + %M ) - 2 Mp 2 Mg

2 2
, 01 z‘“r 205 2 Mg
(W —=)*— + (n*—=)"—
2 2 a? 4

. (4.14)

Here, w,, is the new circumferential resonance frequency that is created
by coupling of the ring and shell. The boundary conditions require that
V =u =n. Or in other words, the modal configuration of both the ring
and shell must match the modal configuration of the combined system. The

new circumferential resonance frequencies of the combined system are

therefore:
4 4 L3
a Mr 0. M ap M,
2 (1, L = W (L X, 5 35y XL X
w-\) ( ZMr + 4M5) v (1' 2 + a 3 ) v [
1.
2 1 M b 2
o My &
w, = v I|- 1 = v =8 . (4.15)
r2 | ML+ g Mg r?

This is the same result as presented in Section 4.12. As shown in this

section, the resonance frequencies predicted using this equation agree
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well with measured frequencies on a ring-stiffened shell. The approxi-
mation in Equation (4.15) is equivalent to neglecting the stiffness of
the shell compared to that of the ring. For the shell on which the mea-
surements were performed the ring stiffness term (a}/r“) is 140 times

larger than the shell stiffness term (u;/a“).

It must be emphasized that the foregoing analysis is only
valid for the driver and receiver in the plane of the ring. The shell
still possesses resonances that do not match the ring’s modal config-
uration around the circumference. These shell resonances are, however,
not effectively excited by the ring, which acts indirectly as a driver.
We can detect the shell's own circumferential resonances as the re-
ceiver is moved away from the plane of the ring. This is illustrated by
Figures 18 and 19. As the receiver is moved away from the ring, weakly
excited shell resonances can be observed that are not detected in the
plane of the ring. These resonances are simply not excited sufficiently
to be observed at the driving-point on the ring. Of particular interest
is the frequency region in the vicinity of the second ring resonance
(900 Hz). llere, we see that much of the vibrational energy of the sec-

ond ring resonance (Figure 18) is coupled into other shell resonances

(Figure 19) as one moves onto the interior surface of the shell.

This also explains why the mode masses M, in Figure 17 are

M M .
equal to %f. rather than é; for 0 = 0. The shell cannot be driven at a
purely one-demensional vibration unless the ring stiffness term is equal

to the shell stiffness term: ar/r = as/a. This condition follows from

Equation (4.15). For most practical structures, this condition should
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never occur because the ring is usually designed to be much stiffer

than the shell.

The shell circumferential modes which match the bending pat-

tern of the ring might be more appropriately named "virtual” modes,

since their effects are quantifiable by means of the circuit elenments

Mn, Cn, and Rp, but their existence is questionable.

In summary, for excitation in the plane of the ring the pri-

mary effect of the shell on the ring is to mass load the ring, and the

primary effect of the ring on the shell is to stiffen the shell in the

circumferential direction. By acting indirectly as a driver, the ring

only excites those shell modes that closely match its bending wavelength,

All other shell modes will be weakly excited.

This phenomenon can be in-~

terpreted analytically as an effective increase in the shell's circum-

ferential stiffness, and the general expressions derived in Section

4.1.,53 for the orthotropic shell apply.

The hybrid mode-sum, mean-value representation of the ring-

stiffened shell is now presented in Figure 20. The driving-point admit-

.

tance of the new closed system is:

where:

1
1 —_—— .
Y = + 1 N (4.1())
o :
Jw(MS+Mr) A 1
Y -_;-—"'Ym
“n
R+ juM, + 1 = M 2 i (w2 - 2 -
u *Juty = o= {ujn, * J* -w))] (4.17)

JwCy <




Yp = Gp+J By

ot
N
O
L}

a1

E
»

Figure 20 llybrid Mode-Sum and Mean-Value Model of the Ring-
Stiffened Cylindrical Shell for Point Excitation
in the Plane of the Ring.
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and

no o+ - wd)l . (4.18)

The admittance Y is the mean-value admittance of the modes that corres-
pond to a constant circumferential mode number. These axial type modes,
along with the virtual circumferential mode represented by L,, form a

complete mode series for a constant mode number v.

Figure 20 provides a good pictufe of the principal loss mechan-
ism at high frequencies. The Yy, can be thought of as a radiation admit-
tance which conducts vibrational energy away from the ring. A detailed
knowledge of the ring or shell loss factors is not required as long as
the shell is sufficiently large or damped, so that a wave reflected from
the shell edges does not significantly contribute to the characteristic

wave travelling outward from the driving point.

To compute the value of Y, we proceed, as before, by driving
the density of resonances €n (for a constant circumferential mode number)

and substituting into the general equation for the mean-value admittance.

Figure 21 illustrates the mode density (1/€;) for the experi-
mental ring-stiffened cylindrical shell. This figure was prepared numer-
ically by computing the inverse of the frequency spacing between succes-
sive resonances and plotting this against the geometric mean of the
resonance frequencies. Equation (4.11) was used for these computations.
A closed form solution of these n furctions is so complicated that it
has no practical use. A more prudent approach is to approximate the de-

sired mode densities within the frequency regions above and below the

radial resonance frequency,

3
3
‘N
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At high frequencies (w>wgy ) the shell frequency equation and

frequency spacing between resonances can be approximated by:

2 2 2
Yy 2 Os 2 _ %s 2
wm = -2—n +-2-0' = wn + —2—0
T a a
and E
W a? a
g = —= =230 = 22 /G-a . (4.19) :
m 3 a2 a

This approximation is very good for n > 4. For small values of n the

high frequency approximation can be improved by:

2

o

2 o 2 S 2y2

Wy T Wy ot (;;o )
and
al? a
S S &
€ = 2—0 = 2—— 1,2 _ .2 . (4.20)
n 32 a w Ldo

This approximation is very good for n < 4. At low frequencies (w'<wo )

the shell frequency equation can be approximated by:

2 ~
W 02
w? = - + w?
m n2+ o2 n
which leads to:
2 v V2 i
€ = (e~ W1 , (4.21) :
n W Wy

where y? =(32-wg . These approximations are plotted in Figure 22 for
the frequency regions in which they apply. The approximate mode den-
sities in Figure 22 show good agreement with the numerically computed
mode densities in Figure 21, Note that the mode density for each n ap-
proaches infinity at the cut-off frequency, w, =w,/8 . Below the cut-

off frequency, the mode density is approximately zero.

Given the foregoing approximations, the mean-value admittance

of the shell for a constant circumferential mode number, n, is:

RO e st
kgl ARST -
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Circumferential Mode Number, n.




+ jB . (4.22)

Above Wy the mode density is inversely proportional to v as, for ex-

" Rl 3:.:"; "

Thus, the imaginary part is a mass reactance and is

ample, a beam.

equal in magnitude to the real part: Bj = -Gp. Below W, the slope of

the mode density varies widely, and By is not a simple function. Due to

the symmetry of the curves, B, is approximately zerc if averaged over the

Any approximation is, however, acceptable

o entire low frequency region.

at low frequencies since the imaginary part of the shell impedance is

G oS s gt %o

negligible compared to that of the ring impedance.

=¥ Below w, we are stretching the usefulness of the mean-value

The frequency spacing between resonances is so great that the

theory.

details of individual resonances emerge. In fact, the increase in mode

density in the vicinity of the ring resonance frequencies can be inter-

&
3 l preted as a resonance rise. By equating the n., mode impedance in Equa-

tion (4.18) to the mean-value impedance [inverse of Equation (4.22)], we

, can compute an equivalent (éJ for the single circumferential mode. The

(l) for the first three circumferential modes {0 = 0) are shown super-
(o4 .

inposed on the mode density for a constant mode number, n, in Figure 23.

In the circuit representation of Figure 20, the circumferential

modes are included separately, and we must therefore terminate the axial

density of resonances at the ¢ = 1 mode as shown in Figure 23. Below

zero and the impedance of the axial

. . . 1 .
this first axial resonance, - is
m

branch approaches infinity, thus, leaving only the impedance of the cir-

cunferential branch.
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Figure 23 Equivalent Mode Density of the First Three Circumferential
Modes (n=1,2 and 3) Superimposed on the Shell Density of
Resonances for a Constant Circumferential Mode Number, n,
(Mode Densities 1/ey are cut-off at o=1).
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We can assume that most losses will occur in the shell; thus

ME. B N e S

we let N;®0 ., The shell circumferential loss factor, n, , is assumed

i

to be about 0.02. These crude approximations are adequate for our pur-

pose, since we are concerned with the predicted mean-value response 1

rather than the resonance peaks.

f} The mean-value driving-point admittance, predicted using the
model in Figure 20, is presented along with the measured admittance in
Figure 24. As shown in this figure, the hybrid mode-sum model is an ex-
cellent means of predicting the important details of the response curve.
Figure 25 shows the driving-point admittance calculated using the mea-

sured ring resonance frequencies and loss factors. This figure clearly

|
=
|
;

demonstrates the validity of the circuit representation of Figure 20.

By modeling the 0 # 0 modes by their mean-value admittance and

the ¢ = 0 modes by their individual admittances, the mode-sum computa-

tions are greatly simplified. There are only eight ring resonances with-
{ in 0 - 10 kHz, and the summation need only be carried up to v = 10 for
| accurate results. In fact, because the ring resonances are well sepa-
rated, excellent results can be obtained by combining the contributions

of onlv the two closest modes,

4.2.2 Series Mean-Value Model

Returning to the general circuit illustrated in Figure 15, we

.; see that the impedance of the ring-stiffened cylindrical shell, Zr, may
simply be represented as the mean value of the ring impedance, 2, in

series with the mean value of the shell impedance, Zg. The ring and
shell impedances must, however, be modified to account for the modal

coupling between ring and shell.
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The primary effect of the shell on the ring is to mass load the
ring, thereby shifting the ring resonance frequencies down by a factor
of £ that is proportional to the square root of the added mode mass of

the shell. The spacing between resonances is, therefore, modified by a

factor of VB, and the ring impedance becomes:

N 1 2/ % -3
= T L R —;—@Mr 2
ZE\JM.\)( -J)
=2/Bn o o (1+)) . (4.23)

where my is the mass per unit circumferential lengtih of the ring.

The primary effect of the ring on the shell is to stiffen the
shell in the circumferential direction.v By substituting the ring’s bend-
ing stiffness for the shell's circumferential bending stiffness in the.
shell frequency equation, it has been shown that the spacing between
resonance frequencies may be approximated by Equation (4.12). At high

frequencies (w>wo) the shell impedance then becomes:

2(2g )M, 4 oL o M5
rA = = ——
® m mar £
= 8va/r ng A %L . (4.29)

For most structures the ratio of a/r is approximately equal to 1. The
high frequency shell impedance is the same as that of a plate whose bend-
ing stiffness constant is equivalent to the geometric mean of the ring
and shell stiffness JCE' At low frequencies (w<wo) the shell im-

pedance becomes:

Tl .3 2 PG i
BREL BT 5
LSRR :

bt ol &
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1 a2 a; 1 -3
Ze = = = Vag/e M A1
s ey 7 oe T
2(2g)) BN,
= 4/2 (a/T) mg ai Voo/w (1 -3) . (4.25)

The low frequency shell impedance is primarily dictated by the ring-

stiffened modes,

It should be noted that Equation (4.25) will become less ac-

curate at very low frequencies, where the shell response is dominated by

. . . . M
the virtual circumferential modes, whose mode masses are 7?., and whose
2
. ; °r
resonance frequencies are the same as that of the ring: w, = 7 V8-

These shell modes are shifted downward by the factor of B, which would

make the shell impedance appear softer than predicted by Equation (4.25).

Combining the complex impedances in the proper manner, produces
the expression for the mean-value driving-point admittance in the plane

of the ring:

1 1
Y, = o= = ———— . (4.26)
T Z1  Cilp+ig

Figure 26 presents the predicted mean value and the measured
driving-point admittance of the ring-stiffened steel cylinder. The shell
was heavily damped for this measurement. The agreement between the pre-

dictions and measurements is good, except for the very low frequencies.

The mean-value predictions can be improved at the very low

frequencies by using the modified circuit representation illustrated in
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1

» Figure 27. To more accurately represent the low frequency ring-shell

§

coupling, the shell impedance is represented by the parallel combination

= of the mean value of the circumferential mode impedances, Zy, and the

i mean value of the noncircumferential mode impedances, Zp.

&

o Because the shell's bending pattern must match the ring's bend-
15 ing pattern at the driving point, for every ring mode there is a virtual

shell circumferential mode. The impedance Zp is, therefore, the mean

. M
value of the mode impedances whose mode masses are Tﬁ.and whose frequen-

cy spacing is the same as that of the ring:

o =T—as+pn T T
Ze,, Mg

(1+3)
S 2

(o8]
4

Yo M

} = /B (a/r) méar/ﬂs_ (1+3) . (4.27)

;;; Here, m; is the mass per unit circumferential length of the shell.
¥
The impedance of the noncircumferential modes, ip» May be ap-

‘ proximated by Equations (4.24) and (4.25). By using these equations, we
are assuming that there are many more noncircumferential modes (o # 0)
than there are circumferential modes (o = 0). Thus, we can remove the
0 = 0 modes to form Zn without significantly changing ip+ This approxi-
mation is valid except at very low frequencies. lowever, :m is large

-

. compared to I, at very low frequencies and can be neglected. The error

in using Equations (4.24) and (4.25) for the impedance Zp is, therefore,

negligible. 1

o B . e e x e -




77

inZm
d m———-
T+

Zr =1

Figure 27 Modified Series Circuit Representation of the Ring-
Stiffened Cylindrical Shell for Radial Point Force
in the Plane of the Ring.
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Combining the complex impedances in the proper manner produces
the expression for the mean-value driving-point admittance in the plane
of the ring:

- 1
Y.r = . (4.28)

“nzm

YA 2
r
+
Z“. Zm

Figure 28 presents the predicted mean-value admittance com-
puted using Equation (4.28) and the measured admittance of the ring-
stiffened steel cylinder. The agreement between theory and measurements
is good. The predicted mean value in Figure 28 is softer than the pre-
dicted mean value in Figure 26 at very low frequencies, and agrees better

with the measurements.

4.2.3 High and Low Frequency Mean-Value Models

If one is interested in either the very high or very low fre-
quency regions relative to the radial resonance frequency, the ring-
stiffened cylindrical shell can be represented by very simple analyvtical

models.

At low frequencies the response of the ring-stiffened shell is
principally that of the ring with shell mass loading as shown in Figure
29. Theresonance frequencies are the circumferential resonance frequen-
cies of the combined ring-shell system as defined by Equation (4.15) and

illustrated in Figure 17, If the ring is much stiffer than the shell:
2
a
- T

y = V? = 8 , (4.29)

w
and the frequency spacing between resonances is:

. a
€, = 2/5.;../5 . (4.30)

T N R s g oo
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M M
My = G
1
F = - F z
2 Mp Moy L
_ R
A

Figure 29. Low Frequency Circuit Representation of the Ring-Stiffened
Cylindrical Shell for Radial Point Force in the Plane of

3 the Ring.
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The low frequency impedance is, therefore:
1 /3 %r .
I, = pm 5 =5—7;—;(2MT+MS)/G(1+;)
ZEV(&-;EE_)
2 4
= 2/B (my, + 5=ml)a Ve (1+3)
* 2/B (mp + 4md)a Y (1+]) . (4.31)

This is the same as the ring impedance, except for the factor of VB and
the added mass loading of the shell, which is approximately equal to half

the shell mass per unit axial length.

At high frequencies, the ring-stiffened shell impedance is
represented by the series mean-value model as presented in Section 4.2.2,

The high frequency impedance is:

Iy = Zp * g

R’

2/Bm o /w (1+j) + 8mgaga,

(8mgopag + 2/B moap /) + j(2/B meap /) . (4.32)

Figure 30 presents the mean-value admittance using the high and
low frequency models, and the measured driving-point admittance of the
ring-stiffened shell, Despite the simplicity of these models, they pro-
vide a good estimate of the mean-value admittance. If the transition at
the radial resonance frequency is smoothed, the resulting prediction
would show very good agreement with the measurements. For most engi-

neering applications, the high and low frequency models are all that are

required for predicting the response of the ring-stiffened shell.

e
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4.2.4 Ring Thickness Antiresonance Model

For thick rings, the high frequency model must be modified,
as shown in Figure 31, to include the effect of the propagation of longi-
tudinal nondispersive waves across the thickness of the ring. With the
driver mounted on the inside of the ring, the velocity on the outside
of the shell in-line with the driver is not equal to the velocity at the
driven point. This phenomenon was observed during the experimental in-
vestigations, and is shown in Figure 32. At very high frequencies (10
kilz) the magnitude of the velocity on the shell is approximately 2! dB
higher than at the driving point. This slight rise is due to the first
resonance (or more correctly, antiresonance) across the thickness of the

Ting.

The propatation of a nondispersive wave across the ring thick-
ness can be modeled by a transmission line (or rod) of length h, as

shown in Figure 31 [11,14]. Here, the impedances are:

. khr
Zl = j than-E—— (4.33)
and
i = -] h: 4.34
2 sin kh, ’ (4.54)

where the wavenumber, k = w/cpﬂ’ and the characteristic impedance (of a
nondispersive wave), Z. =DCP£S' The ring material may be considered in-

finite in one dimension; thus the velocity of sound is:

Cpe = YE'/p . ‘ (4.35)

As a crude approximation, the cross sectional area S may be taken as the

square of the width of the ring, and the characteristic impedance is

then:




Figure 31
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Circuit Representation of Ring-Stiffened Cylindrical Shell,
Modified to Include the Effect of Nondispersive Waves
Across the Ring Thickness.
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Zo = pcppd’ . (4.36)

B VR

We are assuning that the wave propagation through the ring thickness is

A

equivalent to the wave propagation in a rnd of length h,. and cross sec-

tional area of b°.

From Figure 31 the ratio of the shell velocity over the ring

velocity (at the driving point) is:

( ) ZZ(ZS+ZI)
2,42V, = ——— vV
T
s 17 7s Z,+1 47, ’
Vs Z2 1

- Ve T Z,+2,+2;  coskhy + j (Zg/Zc) sinkhy

Vs 2 ZS : 2
20 log |‘-,-1 = -10log | (cos kh)® + (z—sinkh) . (4.37)
T [

This function is plotted in Figure 33 for various values of Z5/Z.. The
peak at kh,. = T/2 occurs when the ring thickness is in antiresonance at
the driving point. As the shell impedance increases relative to the
characteristic impedance of a longitudinal wave in the ring material,
the antiresonance peak decreases. When Zg = Z., the ring-shell inter-

face will not reflect the incident wave, and vg = v, for all frequencies.

For the experimental ring-stiffened cylindrical shell:

Z 8§m_a_q
S S"s T 0.3

Z. 2
and ¢ pCPZb

khy = 0.076 £  ( in kHz) .

At 10 kHz, kh, = 0.76 and the shell velocity is about 2% dB higher than

the ring velocity. This is in good agreement with the measurements
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presented in Figure 32.

From the equivalent circuit in Figure 31:

Z,(Z_+Zq)
2 1
ZT = (Z +2.) 4..__.._5._— . (4.38)
Tz, ez sz
2 %11

Substituting the relationships for 21 and Zz, the expression for thehigh

frequency driving-point admittance becomes:

(Zc/2g) ~ j cot khy
(25/2:) - j cot khy

Note that if kh. is very small, this expression reduces to: ZH =Z + 2.

4.3 Velocity Insertion-Loss of Ring

Quite often a ring is added to a cylindrical shell to stiffen
the shell at the point of excitation, thereby reducing the vibrational
energy that is transmitted to the shell. A practical application is the
mounting of a motor inside a cylinder. For a rotating imbalance, the
motor may be considered a constant force generator, and we are interested
in reducing the velocity at the motor mountings by the insertion of the
ring. Defining the insertion loss as the difference in decibels be-

tveen the shell velocities before and after insertion of the ring, we

have:
2
2 2y
IL = 101log|-5| = 201log|—] dB . (4.40)
Vl ZZ

Here, the 1 and 2 subscripts refer to before and after insertion of the

ring, respectively.

At low frequencies (L)<wo] the impedances above are:




o

1

Z, = Yoa = 4/2 mg ag iag/w (1 -3) (4.41)
8m‘ ;2 (1+3).
and . 5°7s
2, = 2/B (mp +3ma v (1+)) . (4.42)

By combining these complex impedances in the proper manner and taking the

magnitude, the insertion loss 1is:

4m.a? Vo,
IL = ZOIOgI—_ 55 0O - 20 logw . (4.43)
L/B (mp +%ml) ap

At high frequencies (w>uw,) the before and after impedances
are:
= 2 4.44
Zy 8 m  ag (4.44)

and

Z, = 8mgugo. + 2/B moa v (1+3) . (4.45)

The insertion loss is, therefore:

IL = 20log —2 = -10log{(A+B)?+A%] , (4.46)
(A +B) +3jA
where:
Bm_.a
A= —— Vo (4.47)
4msocs
and
B = OLr/OLS . (4.48)

Figure 34 shows the mean-value insertion loss computed for the

ring-stifiened steel cylinder. :The measured driving-point admittance of

the damped shell, with and without the stiffening ring, is shown in

e
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Figure 35. The difference between these curves is the velocity inser-

tion loss. The upper curve was measured at the edge of the shell and
was shifted downward 6 dB to represent an interior point. The lower
mean-value curve in Figure 35 was computed by subtracting the insertion

loss from the upper mean-value curve,.

Above the radial resonance frequency, the ring is very effec-
tive in reducing the velocity transmitted to the shell. At lower fre-
quencies, the shell is inherently stiff and the addition of the ring is
not as effective. If the shell was prestressed, for example, by ex-
terior fluid pressure, the shell would become stiffer and the insertion

loss of the ring would be less effective.

By substituting m. = pbhy and a; = CEhr/ Y12 into Equation
{(4.46), one can show that the improvement in insertion loss with an in-

crease in ring thickness and ring width is approximately:
AIL = -30 logdh, -20 logAb . (4.49)

There is a significant improvement in the insertion loss with an in-
crease in ring thickness. However, with the trend toward lightweight
structures, we usually cannot afford the luxury of increasing the cross-
sectional area or mass of the ring. Besides the added mass, there is
another practical limit on how much the thickness can be increased. As
the ring thickness increases, the thickness antiresonance will decrease
toward the frequency region of interest, thereby increasing the shell
velocity relative to the driving-point velocity. For example, if the
thickness of our ring were increased by 30 percent, Equation (4.49) gives

a 3; dB increase in insertion loss. In Figure 33, khr at 10 kHz, is now

" il o 4.‘.- ‘; ~«-~l. v'4,v/. - TR “. ".‘-..” |‘_‘;'f

+4i
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0.76 x 1.3 = 1.0, and we see that the increase in shell velocity versus
the driving-point velocity is 3% dB. Thus, at 10 kHz, the benefit of
increasing the ring thickness by 30 percent would be completely negated

by the effect of the thickness antiresonance.

4.4 Transfer Admittance in the Plane of the Ring

It is not the intent of this thesis to provide an exhaustive
treatment of transfer admittances. Iliowever, the hybrid model presented
in Section 4.2.1 lends itself so well to the prediction of transfer ad-
mittances in the plane of the ring, that it would be wrong to pass over

this subject without some discussion.

We can assume that the amplitude of the radial displacement in
the plane of the ring is reasonably constant as the receiver is moved
around the circumference away from the driving point because: (1) the
losses in the ring are negligible, (2) there is no dispersion of the
vibrational energy outward from the dfiving point as occurs in a two-
dimensional vibrator, and (3) there is no edge distortion as occurs in
a finite beam. With receiver and driving point separate, but both in the

plane of the ring, the mode masses as shown in Figure 20 become:

M <€2> M
M, = u = L2 (4.50)
EL(F) E4(A) 2 cos ugy
and
M, <E% > M
My = 5 mn = S __1 , (4.51)

Em,n(F) 5m,n(A) 4 cos no,

e
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where ¢\is the location of the receiver, and where v = u = n. The mode

% masses can now be negative if the point of observation in in antiphase

®
‘3 with the driving point. Using Equations (4.50) and (4.51) in the Hybrid
a
Mode-Sum and Mean-Value Model, Figure 20, we can predict the mean-value
i transfer admittance of the ring-stiffened cylindrical shell for any lo-

cation in the plane of the ring.

The measured transfer admittance, along with the predicted

mean value, is presented in Figures 36 and 37 for two separate receiver

locations. The measured ring resonances and loss factors were used in

: these predictions. Figure 36 is with the receiver and driver separated

e

by one-half the circumference @y = 2%/2). With the receiver in this po-
sition, cos Vo, = +1, -1, +1,..., and the circumferential mode masses

5} alternate in sign, producing shallow troughs between the ring resonance
frequencies. Figure 37 is with the receiver and driver separated by one- {
f" quarter the circumference (¢, = 27/4); thus, cos v§, = +1, 0, -1, 0,...
The odd ordered mode masses becomes infinite, and the admittance is zero,

’ The response is, therefore, determined by only the even ordered modes,

whose mode masses alternate in sign, producing shallow troughs between

their resonance frequencies. This simply means that for the odd-ordered :
modes the receiver is located on a node (with respect to the radial dis-
placement). Note, however, that below the radial resonance freguency !
the first and third circumferential modal responses are not significantly
suppressed. The radial nodes associated with these modes possess a

large tangental motion. The measured response is likely due to the

transverse sensitivity of the accelerometer.
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It is significant to note that the predicted transfer admit-
2
o2
tances in Figures 36 and 37 were computed using w, = L a2 B = w, in
2 r

Equation (4.11) rather than y = LI w,/8 » as was used in computing

Q

3

the driving-point admittance. The measured response is much softer than
that predicted without using the shift factor of B. One may speculate
that for the transfer admittance in the plane of the ring the shell's
response is primarily dictated by circumferential modes which must match

the ring modes. It is not clear, however, why this does not seem to be

the case for the driving-point admittance.
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CHAPTER V

- .

SUMMARY AND RECOMMENDATIONS

5.1 Summarv of Results

Using the mean-value admittance method [4], practical means
have been demonstrated for predicting the driving-point admittance of
cylindrical shells, both with and without ring-stiffening. The method
predicts the geometric mean of the response of a vibrator with respect
to frequency, and in contrast to other methods, is applicable at low as ;

well as high frequencies. The basic computations involve the mode mass

and the mode density. The results obtained provide a go.d first approxi-
mation with which to evaluate the design of many complex structures con-
sisting of the fundamental components of plates, shells, beams and rings.
Where the mode densities are small, the mean-value method can be im~-

proved by hybrid mode-sum representations.

The task of determining the driving-point admittance of the

cylindrical shell essentially reduces to that of determining the density
of resonances. The derivation of the density of resonances was general-
ized to the case of orthotropy, where the bending stiffnesses are not
equal along the principal axes of the shell. The orthotropic shell is a
useful model of a cylinder with stiffening rings or stringers. The re-
sults of the analytical development clearly demonstrated that:

1. At frequencies above the radial resonance frequency,

the effective beﬁding stiffness of an orthotropic

shell is equal to the geometric mean of the bending
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stiffnesses in the circumferential and axial direc- P

tions.

2. At frequencies below the radial resonance frequency,
the effective bending stiffness of an orthotropic

shell is principally that of the circumferential

bending stiffness. This result has certain practical

limitations. It is, of course, valid for an isotro-

pic shell and for a shell with greater circumferential

than axial stiffness. However, if the axial stiffness

is much greater than the circumferential stiffness,

this result is valid at only the very low frequencies.
The analytical results showed excellent agreement with experimental mea-

surements on an orthotropic shell,

Particular attention was placed on the use of ring-stiffening
to provide velocity insertion loss at the driving-point. Several analyt-
ical models were developed that describe in a simplified manner the coup-
ling between ring and shell modes, while retaining the important features
of the vibrational response, Each model varies in its complexity and its
accuracy in predicting the driving-point admittance in the plane of the
ring. The selection of which model to use in an application depends on
what details of the frequency response that the designer is interested

in.

The fundamental results of the experimental and analytical in-

vestigations of the ring-stiffened cylindrical shell for point excitation ;

in the plane of the ring are:
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The primary effect of the shell on the ring is to mass
load the ring, thereby shifting the ring resonance
frequencies downward by a factor that is proportional

to the square root of the added mode mass of the shell.

The primary effect of the ring on the shell is to
stiffen the shell in the circumferential direction. By
acting indirectliy as a driver, the ring excites only
those shell modes that closely match its bending wave-
length. All other shell modes will be weakly excited.
This phenomenon can be interpreted analytically as an
effective increase in the shells circumferential stiff-
ness, and the general expressions derived for the ortho-

tropic shell apply.

The most significant contribution of this investigation is a

simplified approach toward analyzing the modal coupling between a one-

dimensional and a two-dimensional vibrator (Section 4.2.1). This approach

uses the canonic circuit representation of a homogeneous vibrator. By

matching
rameters

theorems

the mode numbers of the two component vibrators, the mode pa-
of each vibrator can be combined by simple electrical network

to produce effective mode parameters of the combined system.

The most important analytical results of this investigation

are.summari:ed in Table II.

5.2 Suggested Future Research

The principal shortcoming of the experimental investigations
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was that the ring-stiffened shell was constructed with too thick a ring.
Consequently, the ring impedance was very large compared with the shell
impedance. Considering the accuracy of the driving-point measurements,
it was difficult to observe the shell impedance which is in series with
the ring impedance. More importantly, it would have been desirable to
verify in more detail the modal coupling analysis presented in Section
4.2,1, The fundamental result of this section was the shift in ring

resonance frequencies with the addition of the shell:

4 L4 X

CLr 111, 0.5 L[s

w5t T a2

T 2 a 4 )

w, = Vi e =2 28 . (5.1)
v l”r n'ls r‘

—— e mma—
2 4.

Unfortunately, the u;/r“ term is 140 times larger than the a;/a“ ternm,
and the frequency shift factor 3 is principally that of the added mode
mass of the shell. In order to verify Equation (5.1) beyond a reason-
able doubt, it would be desirable to test a structure where the stiff-
ness of the two-dimensinal vibrator could be observed in the frequency
shift. Such a structure could most simply be a rib-stiffened plate.
Several plates with varying rib stiffeners could be tested to verify the
shift in rib resonance frequencies as prediced by Equation (5.1) for
various ratios of rib to plate stiffnesses., The case where oa(rib) =

M
a(plate) would be of particular interest, because a mode mass of —éz

M
would probably have to be substituted for —gﬁ in the frequency equation.
Dispite this shortcoming, the experimental measurements did provide

strong evidence to support the modal coupling analysis in Section 4.2.1,

Vi e AR 4 G, TR PR TRV AT




This is evident in the Hybrid Mode-Sum and Mean-Value Model where the
magnitude of the shell impedance can be observed between the widely

spaced ring resonances.

As alluded to in Section 4.3, a practical topic for investiga-
tion would be to study the effect of various ring or rib cross sectional
geometries on the velocity insertion loss. The objective would be to de-
vise various methods of stiffening shells or plates to obtain an optimum
insertion loss. Some examples of practical applications are lightweight
aircraft and surface vehicle structures, or inexpensive building par-

titions.

The next analytical step from this investigation is to develop
a simplified method for the prediction of the transfer admittance of
cylindrical shells, The transfer admittance caﬁ always, in concept, be
predicted using the mode-sum procedure. This procedure was used in
Section 4.4 to compute the transfer admittance in the plane of the ring
using the Hybrid Mode-Sum and Mean-Value Model. Here, there were only
eight ring resonances which needed to be accounted for in the calcula-
tions. Unfortunately, the mode functions and resonance frequencies are
usually too difficult to predict or are too numerous such that the mode
sun calculation becomes tedious. Furthermore, for most practical sys-
tems with numerous resonance frequencies, we are usually interested in
the gross response of the system over some frequency interval, rather
than the numerous and sometimes misleading details of the response pro-
vided by a mode~sum calculation. There is a need for a simplified method
of predicting the transfer admittance, where we are not interested in

the individual modal responses, but rather the mean-value of these

S g e TV Ay LT Y VT T Tl e K. B s TIPS T T
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responses over some frequency interval. Such a procedure was presented

by Williams [15] for vibrating plates. Williams accounts for the spread-

X

ing of the vibrational energy into two-dimensional space and for the

losses which determine a background or reverberant field. The results
¥ presented by Williams for plates would, of course, be valid for cvlin-
drical shells above the radial resonance frequency. The low frequency

transfer admittance, however, needs further study.

Another analytical step from this investigation is to consider
line or area excitation, such as an acoustical pressure. Again, the

mode-sum procedure can be used by expanding the excitation in terms of

i
i
i
1

the vibrational modes of the shell, and by computing a separate excita-

] -ﬁ!‘ o

tion constant and mode mass for each shell mode., Walter [20] has shown

‘

that the coincidence of spinning acoustic modes with shell vibrational Ny

modes is a major,if not controlling,factor in the response of a pipe to

o et

internal propagating sound. Walter qualitatively predicted the response

of a pipe wall to a spinning acoustic mode by computing the excitation

constant and substituting into the mean-value admittance expressions.

— -

His results, however, included an effective length over which the
acoustic field drives the shell., It is the author's opinion that a re-
lationship can be found using the mean-value theory that is independent
if an effective length of excitation. All of the analytical expressions
derived in this thesis are independent of shell length. The mean-
value frequency response represents a characteristic wave that is inde-
pendent of shell length or, in other words, it represents a progressive ﬂ
wave in the axial direction. Spinning acoustic waves are also progress-

. ive in the axial direction. One should be able to evaluate the matching

, between these waves on the basis of a unit axial wavelength which for a
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progressive wave is a function of frequency and the characteristic vel-
ocity of sound in the material. The results of such a study would be of

great value in designing pipes with high transmission loss.
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APPENDIX A

EXFERIMENTAL INVESTIGATIONS

A.1 Test Specimens

Various driving-point and transfer admittances were measured
on two circular cylindrical shells, one with and one without ring stiff-
ening. The fundamental dimensions and physical properties of these two

shells are listed in Table III.

Table III

Dimensions and Physical Properties
of the Cvlindrical Shell Test Specimens

Aluminum Steel Cylindrical Shell
Cylindrical Sh.11  With Ring-Stiffener

Shell
length 4 0.724 m 1.00 m
nominal radius a 0.262 n 0.310 m
thickness hs 0.008 m 0.005 m
. Young's elastic .
L‘ modulus E 7.1 x 10'° nt/m®  1.95 x 10" nt/m’
density ) 2700 kg/m? 7700 kg/m?
Poisson's ratio H 0.33 0.28
: Ring
i width b 0.0254 m
: nominal radius T 0.273 m
thickness hr 0.0635 m
Young's elastic
{ modulus E 1.95 x 10'! nt/m’ by
density o 7700 kg/m?
v Poisson's ratio u 0.28




109

The aluminum cylindrical shell was originally fabricated for

A W i

A an underwater experiment, and the ends of the shell were fitted with
tongue-and-grooved rings for the attachment of waterproof caps. These
_i ’ end rings present a mass-like loading on the shell ends, which makes the
length of the shell appear slightly shorter. As long as the driver is
p+ located at an internal point, the effective length of the shell has
g ° little influence on the driving-point admittance. The end rings, there-

g - fore, will not affect our measurements,.

Both the ring and shell of the ring-stiffened shell were fab-

& % ricated from steel, and were attached by a continuous weld. The ring
was located just off center of the shell, so that the ring would excite

all of the shell's axial modes.

Voo

A.2 Method of Support

Both of the cylindrical shells were supported by approximately

ot
-

¥ i six inches of foam rubber., This method of support was investigated by
Williams in his thesis [15]. Williams demonstrated that the vibration pat-
terns and natural frequencies of a plate were not altered by the foam
support. The foam support does, however, reduce the resonance peak

heights if the vibrator is lightly damped. This is of no importance,

since we are primarily concerned with the behavior of the shell as

damping is increased.

The use of foam rubber is an excellent method of supporting
test specimens where the objective is to simulate free-boundary condi-
tions. The impedance of the foam, although extremely small, is similar

- to a pure radiation resistance.  The loss of vibrational energy to the

foam support is, therefore, predictable and constant for all of the
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test specimen's vibrational modes.

A.3 Method of Damping

Measurements on both shells were performed with and without
damping. A commercially available compound was used to dampen the
shells, This material is troweled on and cures to a hard consistency
similar to plaster. The elastic modulus and density of the damping com-
pound are:

4 x 10° nt/m?

E
d
and

pq = 1600 kg/m® .

In order to compare the damped with the undamped frequency re-
sponse curves, we must predict the change in characteristic admittance
of the test specimens with the addition of the damping compound. The
method used in Section 4.2.1 is used here to estimate the influence of

the damping.

For convenience, consider a square, freely supported panel of
thickness hp and length £ of both sides, on which is applied a layer
of damping compound of thickness hy. With the application of the damping
layer, the mode parameters of the panel will change as illustrated in
Figure 38. The mode parameters with the 1, 2, and 3 subscripts are that
of the panel alone, the damping layer alone, and the combined panel with

damping, respectively. The compliance of the combined system is:

(A1)

and 1

]
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Panel

Damping Layer

MECHANICAL SYSTEM

Js e el

‘ Panel ¢ r Mg = M+ M
Rl Q Combined 1
System < Cy = 1 1
Damping 2 \_ Ry = Ry +R,
Layer

CZ —— e e - weme e
R, .

CIRCUIT REPRESENTATION

Figure 38 Circuit Representation of Panel with Damping Layer,

A
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the resonance frequencies, w,3 » Oof the combined panel with damping

2 az

d
™ %E— (m§+ni)Mp + T ™ (mé-ﬁn%) Mg

5 My + My

Here, ap is the plate stiffness constant, and oy is the stiffness con-

must match the modal shape of the panel,

my = m , n, = ny (A.3)

€
3
"

u .
z ul (m? -:-nz)[ffﬁ—lp————‘N o pld]
1 1
A Mp +Md

L
1+c.x£l.i’.i‘_

ar M
=@ { —2 P . (A.4)
vl Mg
1+ %

Mp
change in the resonance frequencies of the panel with the added damp-

layer is, therefore:

1+65'
5 = , A.5
N vrs (A.5)

where:
CIRY 3 A
s ~ade i Edhd
S &'M,  E.h}
p p p p
and P . (A.6)
Mg Pg Ny
. = —
m M, Pphp
= J

Because the modal shape of the damping layer

o

S ottt R aan s




Tie Ep and Ed are the respective elastic moduli of the panel and damp-
in7 compound; and the fp and py are the respective densities. The &g
represents the effective change in bending stiffness, and 4 represents

the effective change in mass.

Given the shift §, in the resonance frequencies of the panel,
the change in frequency spacing between successive resonances is v§, .

The change in the mode mass is:

1
«Mp

From the general expression of the mean-value driving-point admittance, ]

= 1+6, . A7

Equation (2.9), the change in admittance is therefore:

Y 1 (1 55% a 553‘ (A.8)
Ay = —————— = (146 8 X .
V8, (L+6,)

The aluminum cylindrical shell was coated with approximately a
0.25 cm thickness of damping compound. Using the shell data in Table III.

the change in effective stiffness and effective mass is:

85 = 0.0016
and :

§

m = 0.18 ,
and the change in the characteristic admittance is:
20 logAY, = -1dB re sec/kg .

This small change was added to the predictions in Section 3.2.

The ring-stiffened cylindrical shell was coated twice with dam-
ping compound. The first layer was approximately 0.15 cm thick, and with
the added layer, the final thickness was approximately 0.3 cm thick. The

effect of the first coat is:

NG LA R M | 8 s T




§, = 0.00044
8y = 0.058
and .
20 logAY, = -%dBre sec/kg .

and the effect of the final coat is:

§g = 0.0039 ,

S

20 logAY, = -%dB re sec/kg .

0.12

and

Considering that the ring-stiffened shell impedance is dominated by the
ring impedance, these small changes in the shell admittance were neglec-

ted.

Strictly speaking, the estimates above are only valid for fre-
quencies above the radial resonance frequencies where the shell behaves
as a plate. At frequencies below the radial resonance frequency, men-
brane forces predominate and the change in bending stiffness can be ne-
glected, leaving only the change in effective mass. However, the calcu-
lations above demonstrate that mass loading predominates at high fre-
quencies as well as at low frequencies for these particular shells.
Therefore, the estimates are valid below as well as above the radial

resonance frequencies.

A.4 Measurement Apparatus

The experimental measurements were condicted with the system
illustrated in Figure 39. The measurement system was originally assem-
bled by Hannon [12] and later improved by Williams {15]. The basic prin-

cipal of the system is to maintain a constant driving force via a feed-

back loop, while harmonically sﬁeeping through the frequency spectra.
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For a constant driving force, the measured velocity is directly propor-

tional to the admittance.

The sweep oscillator (Spectral Dynamics SD104A-5) generates a N

harmonic signal that automatically sweeps through a preset frequency

range. The output of the oscillator is fed into an amplitude servo/mon-

itor (Spectral Dynamics SD112-1) which maintains a constant force at the

driving-point through a feedback loop. The servo output is amplified by

PR S

a !lcIntosh MC-30 Amplifier which drives the voice coil of the Wilcoxon

Research F3 Driver. A Wilcoxon Research Z602 Impedance Head containing

a force gauge and accelerometer is mounted with the driver. The force

, B
PN

and acceleration signals from the impedance head are amplified by Ithaco

453 Preamps, and are used by the mass cancellation unit to provide a

Y ‘s’ w.

reference signal to the servo that is proportional to the force at the

driving-point.

SETR e R e,
d 2::.
—

D0RSPe: S0

The mass cancellation unit was designed and built by Williams

e

——

and the circuitry is described in his thesis, To understand the purpose
of this component we refer to part (b) of Figure 40. Here, a, is the

acceleration, Fy is the force measured by the impedance head, Am is the

mass of the mounting head, F; is the actual force at the driving point,

and Ig is the impedance of the test specimen. The acceleration at the

CATAR T T T JETETEE e A o

driving point is the same as the measured acceleration; however, the

~ actual force at the driving point is related to the measured force by:

Fg = Fy - M ap . (A.9)

-")
This subtraction is carried out by an operational amplifier in the mass

cancellation unit. The slight change in the accelerometer's sensitivity

- s b - - -~ v LR 7 ,~!;._»__\".m .i“"
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‘ Accelerometer (measures ah)

i

% Y ,4h Driving Voice Coil (force generator)
ﬁ ccceorroerey=— . Force Gauge (measures Fp)
ﬁ Mounting Head and Stud
s (combined mass of M)
F
!“‘ ~¢—— Test Specimen (impedance Zg)
b
[N [ 7

3 (a)
Li

| i

1 Yh¥w My,
r:
- + T
% . Fp, Fg Zs
3 { e
‘ﬁi
T (b)
<

. _EE .

Yh¥ o Mh Vs T o
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+
(]D Fn Fs == C ZS
» (C)
Figure 40 Impedance Head: (a) Mechanical System, (b) Circuit ‘
Representation, and (c) Circuit Representation with

» Mounting Compliance.
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with frequency is also compensated for by programmable gains in the oper-

ational amplifier.

The vibrations of the cylinder are measured using a 1.8 gram

BBN Model 501 Accelerometer. The accelerometer signal is amplified, then

A a¥ .

processed by a Spectral Dynamics SD101 Dynamic Analyzer using a 10 Hz

The output of the RMS filter is con-

bandwidth filter and RMS circuitry.

verted from acceleration in decibels to velocity in decibels by subtract-

ing a DC proportional to log frequency signal as follows:

20 logvg = 20 logag - 20 logf - constant . (A.10)

The acceleration to velocity conversion is implemented by a simple volt-

age divider network as shown in Figure 41. This circuit was designed

and built by Williams.

The dynamic range of the measurement system is approximately

60 dB . The adjustment of the system dynamic range involves a tradeoff

gy o S

between clipping the resonance peaks and losing the antiresonances in

the low frequency noise floor. Since we are seldom interested in the low

frequency antiresonances, the system was always set up to provide a true

plot of the resonance peaks. For some measurements, this means that the

low frequency an..resonances are lost in the noise floor of the system.

Because we are using an accelerometer to measure vibration, the noise

floor is proportional to acceleration, and when plotted on a velocity

scale, will be inversely proportional to frequency. Where applicable, the

svstem noise floor is indicated on the measurements.

Two methods were used to attach the driver to the test speci-

men. For the ring stiffened shell, the driver was attached to the ring
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Figure 41 Electrical Circuit for the Conversion of the Acceleration

Signal to a Velocity Signal.
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by a stud which was screwed into the impedance head and ring. For

Ey 5, o 1

all of the other measurements, the driver was attached to the test speci-
men by a flat mounting stud which was glued to the shell and screwed into

the driver.

Any method of attachment will produce a small compliance be-

i) WEHEAI L, A

tween the impedance head and the test specimen [16]. Even if the impe-
Vs dance head were ideally attached to the test specimen, local deformation

of the test specimen material or deformation of the impedance head itself

Ny idtean us Wbyicigy s o i Sy

j would produce a compliant effect at high frequencies [17]. For the 2602

: impedance head this compliance is on the order of lxiufgnvnt. This

compliance can usually be neglected compared to the compliance of a glue

layer or other method of attachment. The effect of a compliance between

j}‘ the impedance head and test specimen is illustrated by the equivalent

| | circuit in part (c) of Figure 40. In this figure, C is the compliance '
due to the attachment method, and Vg is the actual velocity of the test

specimen at the point of attachment. From Figure 40:

‘ Ze 1
- . _JuwC
Fg = Zgvg = 71 V“h s
2.+
. S jwC
1
v a g+ |
t 1 S C
2 = L = —_—Ju = 1+ijZ
Vs ag 1 s
jwC
and
3 )
20 log |—| = 20 log |1 +juwCzZ_| . (A.11)
ag S
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At high frequencies the compliance short circuits the driving velocity,
thereby reducing the velocity of the test specimen. If Z; is large, the
measured acceleration (ah) will be greater than the actual acceleration

(ag) of the test specimen.

The compliance of both methods of attachment were measured by
Williams. The combined compliance of the glue layer and flat mounting
stud was found to be approximately lxinfsnvnt, and the compliance of
the stud screwed into both the head and test specimen was approximately
7xiuf9nUnt. The largest impedance measured with the glued mounting

4
was approximately 95dB ( Z; = 5.6 x10 kg/sec ). Thus, the difference

between a, and ag at 10 kHz is approximately:
2h
20 log l-a-s-l = 31dB .
The largest impedance measured with the stud screwed into both the head
and test specimen was approximately 120 dB ( ig = 1x 106 kg/sec ), and
the difference between a, and a, at 10 kliz is approximately 53dB. 1In
summary, at high frequencies and for large test specimen impedances, the

acceleration measured by the impedance head (ah) is grossly in error of

the true acceleration of the test specimen (as).

The problem of the mounting compliance was avoided by using a
separate accelerometer to measure the response of the cylindrical shells.
The impedance head acceleration signal was, however, used by the mass
cancellation unit because it correctly represents the acceleration of the

head mass (My).

The attachment of the accelerometer to the test specimen can

influence the measurement in two ways. First, if the mass impedance of
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the accelerometer approaches the impedance of the test specimen, the

added mass of the accelerometer will reduce the response of the test

W W G AR il g

specimen at the point of attachment. Problems with transducer mass load-
i ing are well known and are discussed throughout the literature [18,19].

| Second, any method of attachment will result in a small compliance be-
tween the accelerometer and test specimen, and the mass of the acceler-

E ometer will vibrate in antiresonance with the compliance at the point of

A attachment. Both of these effects are illustrated by the equivalent

circuit in Figure 42.

From Figure 42, we see that:

E Z_+2

2 vy = =—1 v (A.12)
® ZS

%. and

1 jwM

. v = 2, , (A.13)

Z 1}
1

E JuM —l(? j WM

i where: Zy = —-_3%’_ = ——1:.— . (A.14)
: 1 jwu + T 1-wMC

The difference in decibels between the measured velocity (v,) and the

actual velocity (vo) of the test specimen without the accelerometer mass
loading is, therefore:

Vs 2 N

20 log | 2| = ~20 log |1 -9 ;4 . (A.15)
Vo wd L
S L
o

The wz/w; term represents the effect of the antiresonance between the

mass of the accelerometer and the compliance at the point of attachment.

The antiresonance frequency is defined as wg = 1/MC . The juM/Ig term

represents the effect of the accelerometer mass loading on the test
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Figure 42 Circuit Representation of Accelerometer Attached to Test
Specimen.
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specimen. The effect of the mass loading reduces the measured velocity,
while the effect of the antiresonance between M and C increases the mea-
sured velocity, Because of their frequency dependence, both these ef-

fects are only important at high frequencies.

The accelerometer was attached to the cylindrical shells by
means of a sticky putty, known commercially as Duxseal. The compliance
of a small layer of putty was measured by Williams, and was found to be
approximately 2 xlO.8 m/nt. The mass of the accelerometer is 1.8 grams.
The effect of the antiresonance between M and C at the highest frequency
of interest, 10 kHz, is then mz/wg=0.14 , which may be neglected com-
pared to 1 in Equation (A.15). At 10 kHz, the magnitude of juwM/Zg
should be less than 0.25 for its contribution to be neglected in Equation
(A.15). This means that Zg should be greater than 452 kg/sec (55dB) or
that Yg should be less than -55dB . The measured resonance peaks of the
undamped, unstiffened shell exceed an admittance of -53dB and are
slightly compressed by the accelerometer mass loading. Fortunately, we are
not as concerned about the resonance peaks of the undamped measurements
as those of the damped measurements. The damped, unstiffened shell and
all of the ring stiffened shell measurements do not exceed the limiting

value of -53dB and are not affected by the accelerometer mass loading.
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